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Abstract

Web-enabled LLMs frequently answer queries without crediting the web pages they

consume, creating an “attribution gap” – the difference between relevant URLs read and

those actually cited. Drawing on approximately 14,000 real-world LMArena conversa-

tion logs with search-enabled LLM systems, we document three exploitation patterns:

1) No Search: 34% of Google Gemini and 24% of OpenAI GPT-4o responses are gen-

erated without explicitly fetching any online content; 2) No citation: Gemini provides

no clickable citation source in 92% of answers; 3) High-volume, low-credit: Perplex-

ity’s Sonar visits approximately 10 relevant pages per query but cites only three to four.

A negative binomial hurdle model shows that the average query answered by Gemini or

Sonar leaves about 3 relevant websites uncited, whereas GPT-4o’s tiny uncited gap is best

explained by its selective log disclosures rather than by better attribution. Citation effi-

ciency – extra citations provided per additional relevant web page visited – varies widely

across models, from 0.19 to 0.45 on identical queries, underscoring that retrieval de-

sign, not technical limits, shapes ecosystem impact. We recommend a transparent LLM

search architecture based on standardized telemetry and full disclosure of search traces

and citation logs.

Keywords: LLM Search, citations, content monetization, ecosystem exploitation, large lan-

guage models.
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1 Introduction

“The misery of being exploited by capitalists is nothing compared to the misery

of not being exploited at all.” – Joan Robinson, Economic Philosophy, 1962.

The rapid integration of large language models (LLMs) into information-seeking work-

flows has fundamentally transformed how users access and interact with content on the

world wide web. Search-augmented LLMs, which combine generative capabilities with

real-time web retrieval, promise to deliver more accurate, up-to-date, and comprehensive

responses than traditional chatbots limited to just their training data (J. Huang and Chang

2023). But questions have been raised about source accuracy (Smith et al. 2025), intellectual

property rights, scraping websites without permission – so-called ‘access violations’ (Cool-

Fergus 2025; Rosenblat et al. 2025), and what we term “ecosystem exploitation”– the gap

between relevant web content consumed by the LLM when answering a query and those sources

cited in the model’s output (its response).1

This attribution gap has serious implications for the digital ecosystem on which AI’s on-

going utility depends. Content creators, publishers, and knowledge producers rely on ap-

propriate attribution and licensing agreements when their information is used to answer

queries. When LLMs systematically consume relevant content without adequate citation or

remuneration, they undermine the incentive structures that support high-quality informa-

tion production and threaten the economic viability of content creation at scale (O’Reilly

2024).2 This systematic lack of attribution of the content sources consumed by LLMs dur-

ing web search is a widely known issue (AutoGPT 2024; Hacker News 2025; Reuters 2025).3

Yet major LLM vendors reveal little about how their retrieval-augmented generation (RAG)

pipelines choose and ingest web content, and how they cite appropriate web sources (Stox

2025).

1We use ‘consume’, ‘read’, and ‘search’ interchangeably for a relevant website visit logged by the LLM.
2For previous research empirical research on attribution practices across commercial LLM systems see Gao et al.

(2023a), Yue et al. (2023), Li et al. (2023), B. Huang et al. (2025), Fayyazi et al. (2025), and Profound (2025).
3As recently as June 2025 the BBC threatened Perplexity’s search system with legal action for using its content during

search (Reuters 2025). Perplexity has set-up a revenue-sharing program with some publishers and increased citation of
sources in response to accusations against it (AutoGPT 2024).
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Research questions: To what extent do search-augmented LLMs exploit the web — using

content without citing it? And what distinguishes today’s best and worst attribution practices?

Method and Data. Using an LMArena dataset of ≈ 14,000 real-world answers to around

7,000 multi-turn queries taken between March and April 2025, we analyze the “attribution

gap” exhibited by 11 LLM search-enabled models across three provider families: OpenAI

(GPT-4o), Perplexity (Sonar), and Google (Gemini). We define the attribution gap as the

number of relevant URLs visited by the LLM system when answering the query minus the

number of URLs cited in the model’s output, providing a direct measure of ecosystem

exploitation. To isolate this quantity, we remove all hallucinated citations (numbered

citations provided in-text that do not have a corresponding source in the search log) and

all ungrounded citations (URL citations provided that do not appear in the search logs

but may link to a valid site). Our statistical model is a negative binomial hurdle model

with bootstrapped confidence intervals. This allows us to quantify both when attribution

gaps occur and how severe they are, while accounting for differences in query type (e.g.

‘Data Science’, ‘Current Affairs’, etc.). In a second regression we leverage the dataset’s

head-to-head design, looking at differences between model citation behavior for the same

query.

Key findings:

(1) Search-enabled LLM systems exploit by, surprisingly, not searching at all, relying

instead on their pre-training data or simply not disclosing relevant search logs accu-

rately. Despite the models being in search mode, 15.6% of LLM answers skipped web

search entirely. This was highest for Google’s Gemini (34%), followed by OpenAI’s

GPT-4o models (24%).

(2) LLM search systems exploit by providing no citations (zero attribution). 30% of

answers provided no citations. This is driven less by query topic and more by model-

specific behaviors. Gemini provided no citations for a striking 92% of queries, under-
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mining claims that its impact on third-party traffic will be negligible.

(3) Our zero-hurdle statistical model shows that, for a typical query, Google’s Gemini

models and Perplexity’s Sonar models have sizable attribution gaps: at approx-

imately 3 relevant websites visited but not cited. Perplexity exhibits much higher

volume ecosystem exploitation, visiting ≈10 relevant websites per query, but with a

similar overall attribution gap to Gemini.

(4) The full extent of ecosystem exploitation may be underestimated because models

appear to selectively disclose which websites they visit, especially GPT-4o models. By

design, GPT-4o models appear to have a near perfect correspondence between relevant

websites drawn on and those cited, leading to a small attribution gap.

(5) Refining a search-LLM’s RAG pipeline can almost double the number of citations it

provides for each extra webpage it consumes. In “head-to-head” model regressions,

comparing citation differences between model pairs for identical queries, we find that

citation efficiency – the extra citations shown per additional website visited – ranges

from 0.19 to 0.45. This indicates that retrieval design (reasoning modules, search con-

text size, and geolocation), rather than technical limits, determines AI’s relationship

with the world wide web’s ecosystem.

The classical political economists defined exploitation as a category of production,

whereby an owner-producer appropriates the difference between the cost of an input and

its realized value contribution to output (Zwolinski et al. 2022). The classical economists

focused exclusively on the labor input (Fine 1989; Hollander 1992), but we can easily

extend this framework to the data inputs consumed by LLM models during inference when

producing a relevant response (the output).

Policy implications. Advancing a healthy web ecosystem requires transparent search teleme-

try (logs, traces, and metrics). Developers, enterprise buyers, and potentially regulators

should insist that LLM APIs expose a standard trace of every retrieval step and the sources

ultimately cited. The tooling already exists to implement this: observability stacks such
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as LangSmith, Langfuse, Phoenix, and the GenAI semantic-conventions in OpenTeleme-

try can record an end-to-end search trace — query, retrieval, re-ranking, and citation — so

long as each web document is tagged with a stable source-ID (typically a URL hash).4 Per-

document relevance scores can travel in the same span (LangChain 2025). If all providers

adopt common definitions (e.g. llm.retrieval.ids, llm.retrieval.scores), third-parties

could compare across models the exact ratio of “information consumed” to “information

cited”; and equitable business models could be built on top of this.

Limitations. Our study does not explicitly test citation accuracy or relevance, beyond re-

moving hallucinated and ungrounded citations (Gao et al. 2023a). Additionally, our study

does not account for access violations (Cool-Fergus 2025; Rosenblat et al. 2025) – whether

the LLM had permission to visit specific websites, which may be governed by licensing

agreements. Despite these limitations, our study represents the first systematic, cross-

model audit of attribution behavior in commercial search-augmented LLM systems, focus-

ing specifically on their search tools. Our goal is to provide a structured framework for

assessing attribution in empirical LLM studies (Elliott and Archer 2025).

Section 2 describes our data and variables; Section 3 details key empirical features of

our data; Section 4 outlines our two regression models; Section 5 presents our core findings

from the regressions; Section 6 discusses policy implications; and Section 7 concludes. Our

Appendix 8 contains more detailed model results.

4See: https://opentelemetry.io/docs/specs/semconv/gen-ai/.
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2 Data and Method

We conduct a large-scale empirical audit of attribution practices of commercial search-

augmented LLMs in real-world user interactions. Attribution refers to identifying the source

material or input features that contributed to a model’s generated output or decisions

(Li et al. 2023). It emphasizes relevant content “consumed” (read and used) by the LLM

when answering, instead of all websites visited that may not be relevant and therefore not

drawn upon. We assume the search results provided in an LLM’s search log were already

determined to be relevant by the provider. Other forms of exploitation, especially ones

involving unauthorized access are not examined here (Cool-Fergus 2025; O’Reilly 2024).

Dataset Overview. Our analysis uses LMArena’s search dataset, containing pairs of model

answers to the same user query across 11 major commercial LLMs. Our final sample size (n)

is 13,929 observations. We construct all variables from the raw logs rather than using the

variables provided by LMArena due to various errors and inconsistencies.5

The initial dataset before filtering contains 14,000 conversations from 3,642 users,

covering 7,000 queries each given to a pair of models between March (44%) and April (56%)

2025. Each query represents a potential multi-turn conversation, including the model’s

final response. Crucially, this dataset captures actual deployment behavior via application

programming interface (API) calls.

Model Coverage. We analyze 11 commercial variants grouped by provider:

• OpenAI: api-gpt-4o-mini-search, api-gpt-4o-search, api-gpt-4o-search-high, api-gpt-

4o-search-high-loc

• Perplexity: ppl-sonar-pro, ppl-sonar-reasoning, ppl-sonar, ppl-sonar-pro-high, ppl-

sonar-reasoning-pro-high

• Google: gemini-2.0-flash-grounding, gemini-2.5-pro-grounding

5See: https://blog.lmarena.ai/blog/2025/search-arena/.
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The model configurations are detailed further in the LMArena documentation.6

2.1 Key Variables and Measurement

We do not rely on LMArena’s citation variable construction, which we found didn’t

adequately distinguish between search logs and citations for our use case. We instead

reconstruct them from scratch using the model logs in their dataset.

Ecosystem Exploitation (Attribution Gap). Our primary dependent variable measures

the difference between unique relevant pages visited by the LLM during search and unique

pages actually cited to the user in the API response. This captures the extent to which a

model consumes relevant web content without providing appropriate attribution.

Citations. We define citations as any in-text URL reference that is grounded in the

model’s search results log, including both explicit URLs and numbered references that link

to specific sources. We exclude “hallucinated citations” (numbered citations, such as [13],

that link to an empty source) and “ungrounded citations” (citation of URLs that exist but

are not in the search log). Unique URLs (websites) for citations or attribution are those

seen by the model that do not link to the same web page when stripped of parameters (e.g.,

example.com/?tracking_id=23222 is turned into example.com). This amounts to trans-

forming URLs into their base URL and then checking for duplicates.

Relevant Sites Visited (Consumed). We define relevant sites visited by the LLM as

those listed in their search log, regardless of whether they were cited in-text or not. We

treat every URL that appears in the search log as relevant, on the understanding that the

provider has already filtered out non-relevant visits. Note, however, that this log may itself

be incomplete: some vendors — OpenAI, in particular — seem to pre-trim their traces,

returning only a subset of the relevant pages the model actually visited.

6“For Perplexity and OpenAI, this includes setting the ‘search context size’ parameter to medium, which controls how
much web content is retrieved and passed to the model. We also explore specific features by changing the default settings:
(1) For OpenAI, we test their geolocation feature in one model variant by passing a country code extracted from the user’s
IP address. (2) For Perplexity and OpenAI, we include variants with ‘search context size’ set to high. ” Gemini model
defaults to Google Search Tool enabled. See: https://blog.lmarena.ai/blog/2025/search-arena/. Accessed: 16 June,
2025.

6
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Conversation Classification. We categorize all conversations into 12 topic areas us-

ing o4-mini with high reasoning to enable analysis of topic-specific attribution patterns.

This classification covers areas from technical queries (software engineering, data science)

to consumer-oriented topics (shopping, health, finance). We provided the 12 categories to

GPT, drawing on an unsupervised visualization of clusters in the query data on Nomic At-

las.7

Data Cleaning. After removing conversations with classification failures or misaligned

search traces, our final sample contains 13,929 observations, all successfully classified and

with clean attribution data.

Pre-filtering of Logs. Most models appear to filter their logs for relevant websites visited

only – rather than all sites visited. But OpenAI appears to filter them more strictly. Hallu-

cinated citations (numbered citations provided in-text that do not exist in the search log)

appear for Gemini and to a lesser extent Sonar.8 Moreover, in terms of citations provided that

do not appear in the search logs (ungrounded citations): 7% of citations by GPT-4o models

were not found in its search logs, indicating either an overly restrictive pre-filtering of the

search logs or simply the model citing from pre-trained knowledge.

3 Descriptive Patterns

Our data show stark differences in attribution practices across model families, highlighting

that design choices, rather than technological limitations, drive model behavior.

The Attribution Crisis. 15.6% of LLM responses involved no website visits despite being

in search mode, yet 30% provided no citations whatsoever – a substantial gap between

content consumption and content recognition. This pattern varies dramatically by provider.

39% of responses show perfect attribution alignment (zero gap), while 61% exhibit some

7See Nomic Atlas: https://atlas.nomic.ai/data/srulyrosenblat/ai-model-search-comparison-dataset/map/

2da8af3f-c160-4008-928d-8df37c27b947#x7Nh.
8They are by definition zero for GPT-4o models since OpenAI’s models do not use numbers in square brackets for its

citations which is what we track for this metric.
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degree of ecosystem exploitation. For Gemini, a “zero” gap still tends to signals exploitation

though, because the model usually answers without visiting any external site even when its

Google-Search tool is enabled (Table 1).

Provider-Specific Patterns. Table 1 illustrates three distinct patterns of exploitation: (1)

Not visiting relevant sites at all, according to the model’s logs, when answering a question

(exploitation through pre-training reliance) – 24% of GPT search answers and 34% of

Gemini models; (2) Not providing any citations at all – 25% of GPT-4o answers and 92% of

Gemini answers; and (3) Having a large relative gap between sites visited and sites cited –

as in Perplexity’s Sonar.

Table 1. Attribution Statistics by Model Family

GPT-4o Gemini Sonar

Median Gap 0.0 4.0 5.0

Median Citations 2.0 0.0 5.0

Median Sites Visited 2.0 4.0 10.0

Zero Citations 1,309 2,198 663

Zero Site Visits 1,242 817 120

Sample Size (n) 5,272 2,394 6,263

Note: ‘Gap’ refers to the attribution gap = relevant websites visited (content consumed) minus unique websites cited.

• GPT-4o – Limited disclosure of sites visited: On paper it shows almost perfect align-

ment between relevant pages searched according to its logs and pages cited. But this

is likely an artifact of aggressive log-filtering. The model seems to disclose only those

URLs it ultimately cites, omitting any additional relevant pages it read (consumed).

Support for this view comes from its high share of ungrounded citations — links that

appear in the answer but not in the trace — suggesting that many visits are simply

withheld from the log.

• Gemini – No citations provided: Systematic attribution failure with 92% zero-citation
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responses despite some relevant website searches.

• Sonar – High-volume, low-credit: Extensive crawling (10 median sites) with large at-

tribution gaps (5.0 median) despite providing more citations than Gemini or OpenAI.

Topic-Specific Vulnerabilities. Attribution failures concentrate in economically and

legally sensitive domains, including:

• Software engineering: 33% zero-citation rate (700 queries), especially for Gemini

• Games/Creative writing: 40% zero-citation rate (494 queries)

• Education: 43.6% zero-citation rate (228 queries)

• Health information: For Mental & Physical Health and Relationships, systematic gaps

for Gemini (94%) and GPT (26%)

4 Regression Models

4.1 Hurdle-Model Specification

The dependent variable Yi (i = 1, . . . ,n) is the attribution gap: the number of relevant websites

a model visits but fails to cite, for query i, where i runs from 1 to n = 13,929. Because most

answers are perfectly attributed (Yi = 0) while the rest show a skewed count distribution,

we use a hurdle model. It breaks up E[Attribution Gap] = P (Gap > 0) × E[Gap | Gap > 0]

into two sequential components:

(a) Hurdle stage: What is the probability that the gap is exactly zero→ P (Gap > 0)? This is a

Bernoulli outcome with probability πi .

(b) Count stage: If an attribution gap exists (Yi > 0), how large is the gap: E[Gap | Gap > 0]?

We model positive counts with a zero-truncated negative binomial distribution, which has

mean λi and over-dispersion parameter α.9

9If α→ 0 the model would reduce to a Poisson hurdle.
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Putting the two parts together gives the probability mass function:

Pr(Yi = y | xi) =


πi , y = 0,

(1−πi)
fnb

(
y;λi ,α

)
1− fnb

(
0;λi ,α

) , y ≥ 1,
(1)

where:

fnb

(
y;λ,α

)
=
Γ
(
y +α−1

)
Γ (α−1)y!

(αλ)y
(
1 +αλ

)−(y+α−1
)
, α > 0. (2)

fnb(y;λ,α) is the mean-parameterized negative binomial probability mass function,

Linear predictors. Each of the two regression stages has its own regression equation with

predictors, consisting of: model family, the query category or ‘classification’ (e.g. ‘Data

Science’), the log of LLM output character count, and the number of unique search results.

This leads to the following two equations:10

logit(πi) = γ0 +γ⊤fam 1{model_familyi}+γ⊤cls 1{classificationi}+γℓ log
(
response_character_counti

)
,

(3)

logλi = β0 +β⊤fam 1{model_familyi}+β⊤cls 1{classificationi}

+ βsr unique_search_results_counti + βℓ log
(
response_character_counti

)
+
(
1{model_familyi}⊗1{classificationi}

)⊤
βfam×cls

+
(
1{model_familyi}⊗unique_search_results_counti

)⊤
βfam×sr (4)

Equation 3 is the logit probability, where exp(γ fam) represents the odds-ratios for pro-

ducing any attribution gap by model family, exp(γcls) represents the odds-ratios by classi-

fication topic, and exp(γℓ) is the odds-ratio for answer length. The equation contains only

10Number of ‘turns’ had poor predictive power in our model, wrong sign in count component, despite some correlation
to attribution gap for GPT models and especially for Perplexity models.
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main effects (no interactions): the odds of any gap depend separately on model family, topic,

and answer length.11

Equation 4 is the negative binomial count component whereby exp(βfam) represents the

multiplicative changes in the expected number of uncited website visits by model family,

given that a gap exists. exp(βcls) represents the effects by classification topic, and exp(βsr) is

the multiplicative effect of additional search results. A value of 1.30 implies a 30% larger

gap, for example. Equation 4 adds interaction terms βfam×cls, so the effect of a model family

can differ by query topic once a gap exists, and βfam×sr, to account for the varying impact of

searching (number of URLs) on the attribution gap by model family.

4.2 Head-to-Head Model Comparison Regression

To isolate the number of URLs each LLM cites from one additional website search visit,

while controlling for question types, we run a second additional regression model. This

exploits the LMArena head-to-head design, whereby every question is answered by exactly

two model systems. This means that any unobservable query-specific factors driving citation

behavior cancel out. This design also ensures that β1m is not biased by systematically “easy”

or “hard” opponents. We collapse each model pair that answers the same query into a single

observation (focal model − opponent) and run a separate OLS regression for every focal model

m, where i now runs from 1 to n = 6,951, and m contains 11 focal models.

dim = β0m + β1m∆sim + β2m∆ℓim +
∑
k

γ
(m)
k Dik +

∑
j

δ
(m)
j Oij + εim, (6)

In Equation 6, dim denotes the citation-gap advantage – the difference in unique cita-

tions produced by the focal model compared to its ‘opponent’, citationsm− citationsopp. The

term ∆sim captures the search retrieval difference, defined as the gap in unique URLs vis-

ited by the two systems in its logs, while ∆ℓim measures the length difference in characters

between their answers. The vector Dik comprises topic dummies controlling for the clas-

11For example, exp(γℓ) = 1.4 means a one-unit increase in log(response length) multiplies the odds of a gap by 1.4.
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sification of question i (reference category: “Current affairs & factual”), and Oij contains

dummies identifying which rival model the focal system faces (baseline = the first alpha-

betic opponent).12

Each model’s β1m is our key quantity of interest and summarizes model m’s retrieval-to-

citation efficiency or yield: the impact of a marginal website visit on citations.

5 Regression Findings

5.1 Attribution Gap Regression Model

The regression results, transformed into probabilities, show notable differences in attri-

bution reliability across AI model families (Table 2 and Figure 1).13 The ‘expected attri-

bution gap’ is the total prediction from our model: E[Attribution Gap] = P (Gap > 0) ×

E[Gap | Gap > 0]; whereas the first row (‘Probability of a Gap’) is only the first term of this

equation, P (Gap > 0).

12Coefficient interpretation is as follows. The slope β1m measures citation efficiency: it is the expected additional citations
that model m produces per additional URL it opens, conditional on topic, verbosity, and opponent. Thus β1m = 0.40
implies that ten extra retrievals yield roughly four extra citations. The coefficient β2m captures the effect of answer length
(characters) net of retrieval; a significant value would indicate that verbosity itself explains some of the citation edge. Topic

dummies enter through γ
(m)
k ; positive values mean model m out-cites its rival in domain k, whereas negative values signal

a systematic shortfall. Opponent-specific effects are absorbed by δ
(m)
j , showing how the citation gap changes when m faces

rival j instead of the baseline opponent. Finally, β0m gives the baseline citation advantage when the question falls in the
reference topic, the opponent is the baseline rival, and retrieval/length differences are zero.

13The hurdle model produces raw odds-ratios that compare each model family to the reference category (Gemini). How-
ever, for policy interpretation, we need actual probabilities and expected values. To obtain these, we used the fitted model
to make predictions for a standardized query: covering Current Affairs & Factual Information topic classification with
median characteristics (5 search results visited, 2,089 character responses). The model’s ‘hurdle’ component estimates
the probability of having any attribution gap (missing citations & licensing), while the count component estimates the
expected gap size when gaps occur. Multiplying these components gives us the unconditional expectation – the average
number of missing citations per query for each model family.
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Table 2. Expected Total Attribution Gap by Model Family

GPT Gemini Sonar

Probability of a Gap (%) 10.5 70.3 99.3

Expected Attribution Gap (Total) 0.18 3.04 3.12

95% Confidence Interval [0.15, 0.23] [2.80, 3.28] [2.99, 3.25]

Standard Error (SE) 0.02 0.12 0.06

Note: Results from negative binomial hurdle model for Current Affairs & Factual Information queries with median char-
acteristics (5 search results, 2,089 characters, per query), with bootstrapped mean. Confidence intervals from parametric
bootstrap (n=1,000) for total expected attribution gap. Attribution gap is the missing web page (URL) citations per search
query relative to relevant websites consumed, measured as a web page gap. This pattern holds consistently across all topic
classifications (see Appendix, Table 5).

The GPT-4o models appear to show less exploitative attribution behavior but this is most

likely due to them being more circumspect in their disclosures by not showing the full ex-

tent of their logs.14 OpenAI’s models have only a 10.5% probability of having any citation

gaps and an expected 0.18 missing citations (relative to relevant websites consumed) per

query (Table 2). Sonar exhibits citation gaps in 99.3% of queries with 3.12 expected missing

citations per query in total. Gemini falls somewhere between these extremes with citation

gaps in 70.3% of queries and 3.04 expected missing citations in total per query.

Sonar’s near-universal citation gap (99.3% of queries) makes it particularly concerning

for applications requiring source transparency. Gemini is arguably relying too heavily on

internal knowledge given that a large portion of its zero attribution gap is due to it having

zero (disclosed) website searches, at 34% of queries.

14Using OpenAI search in the user interface (UI) shows far more website visits from limited testing.
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Figure 1. Expected Attribution Gaps, Predicted (by Model Family)
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Note: Predicted values for number of citations missing relative to web pages consumed. Based on
negative binomial hurdle model regression coefficients. Bars show the model’s expected citation gap
(websites visited in the logs minus websites cited in the output), estimated at the median conversation
length and median website visits, without interaction effects included. Showing 95% confidence
intervals calculated with the emmeans package in R.

Lastly, in terms of other factors driving how large the gap is once it appears (the count

component), we can look at the incidence-rate ratio (IRR).15 Longer answers actually shrink

the gap size: When logged response character count doubles (from e.g., 100 to 200 char-

acters), the expected number of missing citations decreases by about 11% (IRR 0.89 or so).

Reading more web pages from search inflates the gap: every extra page the LLM system

reads raises the expected uncited count by 13% (IRR ≈ 1.13).

15In count-data models (Poisson, negative binomial, zero-inflated, hurdle, etc.) the regression is fitted on a log scale.
Exponentiating a coefficient converts it to an incidence-rate ratio (IRR). The IRR tells you the multiplicative change in the
expected count when the predictor increases by one unit, holding everything else constant.
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5.2 Head-to-Head Model Results: Citation efficiency

In this section, we focus on β1m coefficient from our head-to-head regressions (Equation

6). This coefficient tells us how many more citations the focal model generates for each

additional search result compared to its opponent. A smaller coefficient signals poorer per-

formance: the focal model converts each extra relevant page it opens into fewer citations

than its comparator does. For example, if Sonar’s coefficient is 0.4, this means that when

it undertakes five additional relevant web page visits than GPT-4o on a question it is ex-

pected to have 5×0.4 = 2 more citations than GPT-4o. 264 coefficients are estimated in total,

running a separate regression for each of the 11 models (24 parameters estimated for each

model).16

We plot β1m in Figure 2 below (Appendix Table 6). Almost all coefficients from the

regression are positive and highly significant.17

Figure 2 below shows that best-in-class variants (Sonar-reasoning-pro-high, Gemini-

flash-grounding, GPT-4o-search-high-loc) yield ∼ 0.43 citations per extra URL; whereas

baseline variants (ppl-sonar-pro-high) return only ∼ 0.19. This implies that the best model

converts every extra retrieved URL into ≈ 0.45 additional citations (compared to its com-

petitor models), whereas the weakest model variant converts that same extra URL into ≈

0.19 citations. The span is therefore about 0.45 − 0.19 ≈ 0.26 citations per URL, showing

that RAG implementation choices can more than double the payoff from each additional

page the model visits. This illustrates just how wide the performance window is, and thus

how much room developers (or regulators) have to raise low performers up to the current

best practice.

161 × Intercept; 11 × topic dummies (classifications), 1 × focal-search-diff (number of web pages), 10 × opponent-model
dummies, 1 × focal-length-diff.

17Among the 264 coefficients estimated, focal_search_diff is significant (and positive) for every model – extra retrieval
still translates into more citations, although the payoff varies. Answer length matters (positive) for the GPT-mini, GPT-
search, Sonar-pro, Sonar, and Sonar-reasoning families, but not for the “high” search variants or Gemini models. One
notable exception: ppl-sonar-reasoning-pro-high shows a significant negative length effect (−1.35 × 10−4, p = 6.75 ×
10−3), suggesting longer answers actually hurt citation performance for this model. Topic effects are sparse and model-
specific. Mental & Physical Health lowers citation edge for GPT-4o variants but raises it for basic Sonar-pro. Finance
boosts citation edge for Sonar-pro-high but suppresses it for Sonar-reasoning and Gemini-2.5. Opponent dummies are
often significant and large.
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Figure 2. Focal Model: Citation difference per extra URL visited
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Note: Extra citations gained for each additional URL the focal model opens (differences between models). This holds
match-up effects constant, isolating technology effects. Regression coefficient β1m shown, predicting differences in citations
for model pairs, for a given query. See equation above.

More specifically, our results show that RAG implementation type (technology) is more

important than model family (e.g., OpenAI vs. Gemini):

• An ANOVA test shows that within-family variation (the variance) of search coefficients

β1m is almost 8 times larger than between-family variation. This means that differences

in model behavior is far greater within model families than between them.18

• Within Sonar alone, upgrading to the reasoning tier more than doubles efficiency (from

18We ran a one–way ANOVA on the eleven citation–efficiency coefficients (β̂1m on focal_search_diff) grouped by
provider family. The within–family mean square is nearly eight times the between–family mean square:

MSwithin = 0.0116, MSbetween = 0.0015, F(2,8) =
0.0015
0.0116

≈ 0.13, p = 0.88.

Thus, variability inside each provider family dominates the small differences between family means: implementation
choices explain ∼ 8×more of the spread in citation efficiency than the family label itself.
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0.19-0.20 → 0.44-0.45), with Sonar-reasoning (0.44) vs Sonar-pro-high (0.19) = 0.25

difference. For GPT models: GPT-4o-search-high-loc (0.42) vs GPT-4o-mini (0.25) =

0.17 difference.

• Location signals matter too. Adding a country code to GPT-4o raises search-citation co-

efficient efficiency by roughly 10 % (0.39→ 0.43), confirming that retrieval relevance

translates directly into better attribution (though it is unclear why this is the case).

Practically, this effect size is moderate since for a model getting 10 extra search re-

sults, location signals would generate ≈ 0.37 additional citations. But we know that

local search operates differently, both in traditional search and increasingly with LLMs

(Rollison 2025).

Lastly, the regression results show that more basic models (GPT-mini, GPT-search, and

basic Sonar models) compensate for lower search efficiency through verbosity – they need

longer answers to achieve similar citation performance. Advanced (‘high’ variant and Gem-

ini) models achieve higher citation rates through superior search utilization, making ver-

bosity unnecessary to achieve improved citation rates.

6 Policy Implications

Without standardized telemetry — comprehensive logs and traces of what an LLM retrieves

and cites — no transparent and competitive market for licensing, revenue-sharing, or other

content-monetization schemes can easily emerge. Publishers need hard numbers on how

often their pages power an answer in order to automate royalty or revenue-share flows; reg-

ulators need the same auditable data to enforce forthcoming disclosure rules in jurisdictions

such as the European Union (EU) and California. In short, richer telemetry is the prerequi-

site for both commercial remuneration and public oversight.

The technical pieces already exist for full disclosure of an LLM’s search and citation

trace; what remains is coordination. The key challenge is to persuade providers to adopt
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a common telemetry standard — and to ensure buyers and regulators can incentivize its

provision.

Modern observability frameworks — LangSmith, Langfuse, Phoenix, and the GenAI

semantic-conventions in OpenTelemetry — allow for recording an end-to-end search trace,

which can detail the search activities that an LLM RAG system undertakes when trying to

find the most relevant context for the user. One way to think of traces is as a collection of

structured logs with context, correlation, and hierarchy baked in. Each web page retrieval,

reranking, and generation step by the LLM can be logged as an OpenTelemetry span, pro-

vided every document is tagged with a stable Source ID, typically a hash of the original URL

or file.19

Because hashes are one-way fingerprints, they enable later verification without revealing

copyrighted text. The same span can carry the numerical relevance score (‘how relevant

was this webpage to the LLM’s answer’) produced by the vector store, BM25 index, or cross-

encoder, as long as that score is preserved in the trace (LangChain 2025; Ryaboy 2025).

If each retrieved document carries two stable fields — say llm.retrieval.ids (a hash or

URL that uniquely identifies the page) and llm.retrieval.scores (its relevance score or

rank) — and those fields are propagated from the retrieval step all the way to the final API

response, then anyone inspecting the trace can, in theory:

(1) Enumerate every page the model actually saw;

(2) Check which of those pages were later cited in the answer; and

(3) Compare the relevance scores of cited pages with those that were ignored.

In short, the full provenance of “pages viewed” versus “pages credited” becomes au-

ditable.20

OpenTelemetry-like open protocols can be a lightweight standard that enables compari-

son and validation of LLM behavior across models. And adopting telemetry protocols (stan-

dards) requires only incremental changes to today’s open-source stacks.21

19With a span representing a unit of work or operation and are the building blocks of traces. See: https://

opentelemetry.io/docs/concepts/signals/traces/.
20https://opentelemetry.io/docs/specs/semconv/gen-ai/
21In LangChain, a single line of code drops the hash and score into Document.metadata. LangSmith then records them
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The real challenge, perhaps, lies in constructing the market and regulatory incentives to

advance widespread adoption and disclosure. Transparent traces unlock clear, quantifiable

monetary benefits for providers. API buyers in legal, medical, and financial sectors increas-

ingly require provenance guarantees. This means that model developers that expose richer

evidence trails could, therefore, command premium pricing and benefit from greater de-

mand in these compliance-sensitive sectors. However, the model developers may be reticent

to undertake such additional disclosures without liability safeguards or more reliable RAG

pipelines.

Yet our findings also point toward possible paths forward. A business model for LLM

search could create a mutually beneficial exchange of content for web traffic or direct pur-

chases. Commercial queries present a fairly distinctive pattern in our analysis. Shopping

and commercial-intent queries show attribution gaps 76% larger than other categories, yet

these domains offer opportunities for such mutually beneficial arrangements. Early web

advertising models, where attribution facilitated click-through and conversion, provide rel-

evant precedents for sustainable approaches.

7 Conclusion

This study provides one of the first systematic empirical audits of attribution practices in

commercial search-augmented LLMs. When LLMs exploit content from platforms without

proper attribution, they undermine the economic incentives that sustain high-quality infor-

mation production. Returning to our opening quote by the late economist Joan Robinson –

on the notion that exploitation under capitalism involves the absence of commercial rela-

tions as well as its presence – we find similar twin forces at work in our analysis. Gemini

systematically excludes the world wide web’s content ecosystem when answering questions

as its form of exploitation, while Perplexity exploits through the opposite behavior, overly

zealous consumption of web content without commensurate attributions.

automatically in each trace span (LangChain 2025). Langfuse performs the same mapping when it converts LangChain
calls into OpenTelemetry. Phoenix ingests any span that follows the GenAI conventions, meaning dashboards that plot
“high-score pages not cited” or “low-score pages that slipped through” can be deployed without further engineering.
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We find a substantial “attribution gap” between relevant content consumed from web-

sites and attribution practices that threatens the sustainability of the digital content ecosys-

tem. Our analysis of ≈14,000 real-world interactions demonstrates that leading AI systems

systematically consume web content without adequate attribution, with Gemini providing

no citations in 92% of its responses and Perplexity visiting approximately a dozen relevant

websites while crediting only a few.

A negative binomial hurdle model shows that the average query answered by Gemini or

Sonar leaves about 3 relevant websites uncited, whereas GPT-4o’s tiny uncited gap is best

explained by its selective log disclosures rather than by better attribution. GPT-4o models

remain difficult to audit due to what appears to be stricter pre-filtering of its model search

logs.

The dramatic variation in citation efficiency between models when answering the same

question – from 0.19 to 0.45 citations per additional web page visited – illustrate that

attribution gaps result from design choices, not simply technical limitations. The best-

performing systems show that transparent, comprehensive attribution is technically feasible

today (even if accurate citations and output remain a real ongoing issue).

Closing the attribution gap is, therefore, less a technical hurdle than one of proper co-

ordination and market incentives. Standardizing two telemetry fields — document hashes

and relevance scores — would allow anyone to verify which information an LLM consumed

and how faithfully it credited that information. Observability tools already provide the

necessary plumbing. What remains is a collective decision by model providers to enable

it and by developers and buyers to reward those who do. Transparent search traces would

strengthen incentives for high-quality content and give users a robust evidentiary basis for

trusting machine-generated answers.

Our results demonstrate that transparency in the web sources consumed and cited by

LLMs when answering user queries is fundamentally an engineering choice.22

22This aligns with emerging research on LLM citation evaluation frameworks (Gao et al. 2023b) and attribution methods
in scientific literature (Saxena et al. 2024; Najjar, Ashqar, et al. 2025), which show that technical solutions are available
but underutilized. Source-aware training and fine-tuning have also been shown to improve citation behavior (Khalifa et al.
2024). See also Asai et al. (2023) and Borgeaud et al. (2022).
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8 Appendix

8.1 Full Hurdle-Model Specification and Diagnostics

The regression is estimated with R’s pscl::hurdle() function, which maximizes a likeli-

hood that combines a binary gate for perfect attribution and a zero-truncated negative bino-

mial (NB) for positive gaps. Writing πi ≡ Pr(Yi = 0), the log-likelihood is

ℓ(γ ,β,α) =
∑
i:yi=0

logπi +
∑
i:yi>0

{
log(1−πi) + logfNB(yi | λi ,α)− log

[
1− fNB(0 | λi ,α)

]}
, (A1)

with γ = (γ0,γ1,γ2,γ3)⊤ for the gate and β = (β0,β1,β2,β3,β4)⊤ for the count component.

The NB kernel is parameterised by its mean λi and over-dispersion α > 0:

fNB(y | λi ,α) =
Γ
(
y +α−1

)
Γ (α−1)y!

(
αλi

)y (
1 +αλi

)−(y+α−1
)
, Var(Yi | Yi ≥ 1) = λi +αλ2

i . (A2)

Likelihood ratio tests can assess whether the count process is better modeled as Poisson

or negative binomial (null hypothesis H0 : α = 0), and whether inclusion of the interaction

term improves model fit. A negative binomial outperforms. Model fits (information criteria)

are superior with interaction terms and shows domains where the effect of a model family

changes the expected gap magnitude.

With interaction terms the zero-inflated model performs better in a Vuong test than a

hurdle model. Our hurdle model though aligns better with theoretical understanding of

citation process. We believe interpretability advantages outweigh improvements though.

BFGS optimisation converged in 54 iterations, giving θ̂ = 5.69.
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Figure 3. Attribution Gap Histogram vs Negative Binomial (Red)
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Note: Attribution gap (relevant sites visited in logs minus websites cited by in-text URLS) shows a negative binomial
distribution (red over-plot).

8.2 Detailed Model Results

Figure 4 shows topic specific gaps, as predicted by our model. ‘Shopping & Commercial

Intent’, perhaps surprisingly, shows the largest gap across models – being 0.2 lower for

the Sonar model family. This could reflect a greater selectivity in which results are shown

by the model given potential greater commercial incentives to ‘get it right’, or to abide

by pre-existing licensing agreements. But it also could simply highlight the absence of a

worked out business model in this area, despite large opportunities to monetize website

traffic in this area of LLM search.
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Figure 4. Expected Citation Gaps by Regression Model (Query
Classification and Model Family)
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Note: Bars show the expected citation gap (relevant websites visited in the logs minus websites cited
in the LLM’s output) for each query classification. Classification labels are ordered by gap magnitude
within each panel. See Table 2 above for method.
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Table 3. Count Model Coefficients (No Interactions)

Term Estimate Std. Error z value p-value

(Intercept) 2.163 0.078 27.66 0.000

modelfamilyGPT -1.099 0.156 -7.05 0.000

modelfamilySonar 0.207 0.054 3.81 0.000

classificationCurrent Affairs & Factual Information -0.021 0.053 -0.39 0.695

classificationData Science 0.057 0.064 0.89 0.371

classificationEducation -0.115 0.091 -1.26 0.209

classificationFinance & Economics 0.034 0.068 0.50 0.615

classificationGames, Fantasy & Creative Writing -0.053 0.074 -0.72 0.473

classificationHistory -0.008 0.087 -0.09 0.929

classificationLifestyle -0.028 0.064 -0.43 0.665

classificationMental & Physical Health & Relationships 0.050 0.077 0.66 0.512

classificationOther -0.093 0.065 -1.43 0.154

classificationShopping & Commercial Intent 0.021 0.061 0.35 0.727

classificationSports -0.033 0.091 -0.37 0.712

search results count 0.125 0.003 39.74 0.000

log(response length) -0.171 0.008 -20.24 0.000

log(θ) 1.740 0.031 55.39 0.000

Note: Gemini as baseline model. Showing coefficients (main effects) from the count component of the negative binomial
hurdle model.
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Table 4. Hurdle Model Coefficients (No Interactions)

Term Estimate Std. Error z value p-value

(Intercept) -0.729 0.207 -3.52 0.000

modelfamilyGPT -3.140 0.069 -45.66 0.000

modelfamilySonar 1.601 0.061 26.28 0.000

classificationCurrent Affairs & Factual Information 0.195 0.096 2.03 0.043

classificationData Science 0.268 0.117 2.29 0.022

classificationEducation -0.245 0.144 -1.69 0.090

classificationFinance & Economics 0.341 0.121 2.83 0.005

classificationGames, Fantasy & Creative Writing -0.265 0.108 -2.45 0.014

classificationHistory 0.398 0.169 2.36 0.018

classificationLifestyle 0.177 0.111 1.59 0.113

classificationMental & Physical Health & Relationships 0.189 0.144 1.31 0.190

classificationOther -0.529 0.098 -5.39 0.000

classificationShopping & Commercial Intent 0.567 0.115 4.93 0.000

classificationSports 0.577 0.151 3.81 0.000

log(response length) 0.165 0.024 6.92 0.000

Note: Gemini as baseline model. Showing coefficients (main effects) from the hurdle component of the negative binomial
hurdle model.
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Table 5. Expected Citation Gaps by Model Family and Topic Classification

GPT-4o Gemini Sonar

Classification Est. 95% CI Est. 95% CI Est. 95% CI

Computer Science & Software Engineering 0.17 (0.14–0.22) 2.89 (2.63–3.14) 3.72 (3.55–3.89)

Current Affairs & Factual Information 0.18 (0.15–0.23) 3.03 (2.78–3.29) 3.12 (3.00–3.26)

Data Science 0.21 (0.16–0.27) 3.33 (2.97–3.73) 3.52 (3.34–3.74)

Education 0.12 (0.08–0.19) 2.37 (1.97–2.78) 3.88 (3.57–4.19)

Finance & Economics 0.23 (0.18–0.29) 3.34 (2.95–3.73) 3.52 (3.34–3.72)

Games, Fantasy & Creative Writing 0.15 (0.11–0.21) 2.48 (2.18–2.82) 3.73 (3.54–3.92)

History 0.19 (0.13–0.30) 3.27 (2.77–3.80) 3.76 (3.45–4.10)

Lifestyle 0.23 (0.17–0.31) 3.00 (2.69–3.34) 3.36 (3.19–3.54)

Mental & Physical Health & Relationships 0.23 (0.17–0.32) 3.23 (2.76–3.73) 3.39 (3.17–3.63)

Other 0.11 (0.09–0.15) 2.11 (1.88–2.39) 3.29 (3.13–3.47)

Shopping & Commercial Intent 0.35 (0.27–0.45) 3.51 (3.16–3.85) 3.66 (3.48–3.86)

Sports 0.27 (0.19–0.38) 3.35 (2.85–3.95) 3.82 (3.59–4.07)

Note: Total expected attribution gap from negative binomial hurdle model. Predictions are at the median query (5 search
results and 2,089 characters). Confidence intervals from parametric bootstrap (n=1,000). Est. = Expected citation gaps
per query.
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8.3 Head-to-Head Regressions: Table of results

Table 6. Incremental citations per extra URL opened, by model variant

Model variant Family n β̂1m SE p

ppl-sonar-reasoning-

pro-high

Sonar 848 0.447 0.015 1.4× 10−138

ppl-sonar-reasoning Sonar 1635 0.445 0.012 4.3× 10−215

gemini-2.0-flash-

grounding

Gemini 1189 0.427 0.013 6.0× 10−172

api-gpt-4o-search-

high-loc

GPT 1222 0.426 0.010 6.1× 10−240

api-gpt-4o-search-high GPT 1695 0.389 0.010 1.3× 10−224

ppl-sonar Sonar 1200 0.339 0.012 1.8× 10−128

gemini-2.5-pro-

grounding

Gemini 1200 0.312 0.011 4.8× 10−130

api-gpt-4o-search GPT 1188 0.264 0.012 2.5× 10−89

api-gpt-4o-mini-search GPT 1158 0.251 0.012 1.1× 10−80

ppl-sonar-pro Sonar 1208 0.200 0.014 9.5× 10−46

ppl-sonar-pro-high Sonar 1359 0.191 0.012 9.9× 10−51

Note: n = pair-wise query comparisons involving the focal model. β̂1m is the coefficient on focal_search_diff,
interpreted as the expected number of additional citations produced for each extra URL the focal model opens.
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